Sign Convention: Mirrors and Lenses

Object Distance (S)	
S>0 (Real)	"O" to the Left of "V"
S<0 (Virtual)	"O" to the Right of "V"
Image Distance (S')	
S'>0 (Real)	"O" to the Left of "V" (Mirror)
	"O" to the Right of "V" (Lens, Refractive Surface)
S'<0 (Virtual)	"O" to the Right of "V" (Mirror)
	"O" to the Left of "V" (Lens, Refractive Surface)
Radios of Curvature (R)	
R>0 (Convex)	"C" to the Right of "V"
R<0 (Concave)	"C" to the Left of "V"
~ 011 701	

- S.- Object Distance S'.- Image Distance
- R .- Radios of Curvature
- O.- Object Point
- V.- Vertex
- C.- Center of Curvature
- F.- Focal point
- f.- Focal distance

Refractive surface

Imaging Equation: Mirror

$$\frac{1}{s} + \frac{1}{s'} = -\frac{2}{R} = \frac{1}{f}$$

Imaging Equation: Refractive Surface $n_1 \rightarrow n_2$

$$\frac{n_1}{s} + \frac{n_2}{s'} = -\frac{n_2 - n_1}{R} = \frac{1}{f}$$

Magnification: $m = \frac{h_i}{h_o} = -\frac{n_1 s'}{n_2 s}$

Object height h_o Image height h_o Erected image m > 0Inverted image m < 0

Ray Tracing: Mirrors

Ray leaving a point P at the tip of object

Ray 1. Ray Parallel to the Optic Axis (OA). After Reflection:

- Concave: Passes through the Focal Point

- Convex: propagates as if it cam from focal Point

Ray 2. Leaves P in a direction towards or from F

- Concave: Passes trough $F \rightarrow Reflects$ and propagates parallel to OA
- Convex: Leaves \underline{P} as it came from $F \rightarrow Reflects$ and emerges parallel to OA

Ray 3. Leaves P and propagates along the line joining P and C (Center of curvature) Reflects along the same line.

Thin Lens: $n_1 \rightarrow n_2 \rightarrow n_1$

Thin Lens Equation:

$$\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{n_1} (\frac{1}{R1} - \frac{1}{R2}) = \frac{1}{f}$$

Lens Maker Formula

$$\frac{n_2 - n_1}{n_1} \left(\frac{1}{R1} - \frac{1}{R2} \right) = \frac{1}{f}$$

Newton Equation for Thin Lens

x .- Object distance from Focal Point x .- Image distance Focal Point Focal Distance f

Ray Tracing: Thin Lens

Ray leaving a point "P" at the tip of object

Ray 1. Ray leaving P parallel to OA

- Converging lens: After Refraction ray passes through right focal point F
- <u>Diverging lens:</u> comes from <u>left</u> focal point F

Ray 2. Leaves P

- <u>Converging lens:</u> passes though Focal Point F_→ emerges parallel to OA
- <u>Diverging lens:</u> propagates toward (right) Focal Point F_→ emerges parallel to OA

Ray 3. Leaves P and propagates along the line joining P and center of the lens in Optical Axis, then it emerges without deviation.

